Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets (The Astrophysical Journal, 2011)

The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-band filter photometry between 350 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

Continue Reading →

White-Light Flares On Cool Stars In The Kepler Quarter 1 Data (The Astronomical Journal, 2011)

We present the results of a search for white-light flares on ~23,000 cool dwarfs in the Kepler Quarter 1 long cadence data. We have identified 373 flaring stars, some of which flare multiple times during the observation period. We calculate relative flare energies, flare rates, and durations and compare these with the quiescent photometric variability of our sample. We find that M dwarfs tend to flare more frequently but for shorter durations than K dwarfs and that they emit more energy relative to their quiescent luminosity in a given flare than K dwarfs. Stars that are more photometrically variable in quiescence tend to emit relatively more energy during flares, but variability is only weakly correlated with flare frequency. We estimate distances for our sample of flare stars and find that the flaring fraction agrees well with other observations of flare statistics for stars within 300 pc above the Galactic plane. These observations provide a more rounded view of stellar flares by sampling stars that have not been pre-selected by their activity, and are informative for understanding the influence of these flares on planetary habitability.

Continue Reading →

Tidal obliquity evolution of potentially habitable planets (Astronomy and Astrophysics, 2011)

We apply two equilibrium tide theories – a constant-phase-lag model and a constant-time-lag model – to compute the obliquity evolution of terrestrial planets orbiting in the habitable zones around LMSs. The time for the obliquity to decrease from an Earth-like obliquity of 23.5° to 5°, the “tilt erosion time”, is compared to the traditional insolation habitable zone (IHZ) in the parameter space spanned by the semi-major axis a, the eccentricity e, and the stellar mass Ms. We also compute tidal heating and equilibrium rotation caused by obliquity tides as further constraints on habitability. The Super-Earth Gl581 d and the planet candidate Gl581 g are studied as examples for these tidal processes.

Continue Reading →

High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels (Geobiology, 2011)

Despite the importance of the anaerobic oxidation of methane (AOM) to global biogeochemical cycles, the relationship between sulfate concentration and the rate of AOM has not been previously experimentally constrained. Here, we present measurements showing substantial methane oxidation at low sulfate concentrations, with no significant decrease in the rate of AOM until sulfate levels are well below 1 mm. At sulfate levels below 1 mm, there appears to be a strong decoupling of AOM and sulfate reduction, with a 13C‐label transferred from methane to carbon dioxide occurring at a rate almost an order of magnitude faster than the observed rate of sulfate reduction. These results allow for the possibility that high rates of AOM occurred in the Archean oceans and that high rates of AOM may be found in freshwater environments (lakes, rivers, etc.) and deep ocean sediments today.

Continue Reading →