Multiple oscillations in Neoarchaean atmospheric chemistry (Earth and Planetary Science Letters, 2015)

Here we present four new coupled carbon and quadruple sulphur isotope records from distal, time equivalent (2.7–2.5 Ga), sedimentary successions from South Africa and Western Australia. These extended records reveal similar chemostratigraphic trends, supporting a dynamic terminal-Neoarchaean atmosphere, oscillating between a hazy state at elevated methane concentrations, and a haze-free anoxic background state. We suggest these atmospheric aberrations were related to heightened biogenic methane fluxes fuelled by enhanced nutrient delivery from climatically or weathering induced feedbacks. These data question the canonical view of a simple, unidirectional planetary oxygenation and signify that the overture to the GOE was governed by complex feedbacks within the Earth–biosphere system.

Continue Reading →

The Three-dimensional Architecture of the Υ Andromedae Planetary System (the Astrophysical Journal, 2015)

The υ Andromedae system is the first exoplanetary system to have the relative inclination of two planets’ orbital planes directly measured, and therefore offers our first window into the three-dimensional configurations of planetary systems. We present, for the first time, full three-dimensional, dynamically stable configurations for the three planets of the system consistent with all observational constraints. While the outer two planets, c and d, are inclined by ~30°, the inner planet’s orbital plane has not been detected.

Continue Reading →

COMPARATIVE HABITABILITY OF TRANSITING EXOPLANETS (The Astrophysical Journal, 2015)

Exoplanet habitability is traditionally assessed by comparing a planet’s semimajor axis to the location of its host star’s “habitable zone,” the shell around a star for which Earth-like planets can possess liquid surface water. The Kepler space telescope has discovered numerous planet candidates near the habitable zone, and many more are expected from missions such as K2, TESS, and PLATO. These candidates often require significant follow-up observations for validation, so prioritizing planets for habitability from transit data has become an important aspect of the search for life in the universe.

Continue Reading →

Mercury-T: A new code to study tidally evolving multi-planet systems. Applications to Kepler-62* (Astronomy & Astrophysics, 2015)

A large proportion of observed planetary systems contain several planets in a compact orbital configuration, and often harbor at least one close-in object. These systems are then most likely tidally evolving. We investigate how the effects of planet-planet interactions influence the tidal evolution of planets. We introduce for that purpose a new open-source addition to the Mercury N-body code, Mercury-T, which takes into account tides, general relativity and the effect of rotation-induced flattening in order to simulate the dynamical and tidal evolution of multi-planet systems.

Continue Reading →

Accretion of Uranus and Neptune From Inward-migrating Planetary Embryos Blocked by Jupiter and Saturn (A&A, 2015)

Reproducing Uranus and Neptune remains a challenge for simulations of solar system formation. The ice giants’ peculiar obliquities suggest that they both suffered giant collisions during their formation. Thus, there must have been an epoch of accretion dominated by collisions among large planetary embryos in the primordial outer solar system. We test this idea using N-body numerical simulations including the effects of a gaseous protoplanetary disk. One strong constraint is that the masses of the ice giants are very similar – the Neptune and Uranus mass ratio is ~1.18. We show that similar-sized ice giants do indeed form by collisions between planetary embryos beyond Saturn. The fraction of successful simulations varies depending on the initial number of planetary embryos in the system, their individual and total masses. Similar-sized ice giants are consistently reproduced in simulations starting with five to ten planetary embryos with initial masses of ~3–6 M⊕. We conclude that accretion from a population of planetary embryos is a plausible scenario for the origin of Uranus and Neptune.

Continue Reading →

Atmospheric hydrogen peroxide and Eoarchean iron formations (Geobiology, 2015)

Here, we modeled the amount of H2 O2 that could be produced in an Eoarchean atmosphere using updated solar fluxes and plausible CO2 , O2 , and CH4 mixing ratios. Irrespective of the atmospheric simulations, the upper limit of H2 O2 rainout was calculated to be <10(6) molecules cm(-2) s(-1) . Using conservative Fe(III) sedimentation rates predicted for submarine hydrothermal settings in the Eoarchean, we demonstrate that the flux of H2 O2 was insufficient by several orders of magnitude to account for IF deposition (requiring ~10(11) H2 O2 molecules cm(-2) s(-1) ). This finding further constrains the plausible Fe(II) oxidation mechanisms in Eoarchean seawater, leaving, in our opinion, anoxygenic phototrophic Fe(II)-oxidizing micro-organisms the most likely mechanism responsible for Earth's oldest IF.

Continue Reading →

Exo-C Mission Study Final Report (NASA Exoplanet Exploration Program, 2015)

Exo-C is a NASA-sponsored community mission study of a space telescope designed for high contrast imaging of extrasolar planetary systems with an internal coronagraph. Starting in summer 2013 and completing in early 2015, the Exo-C study shows what could be done with an optimized space telescope within a “probe scale” cost cap of $1B. The Exo-C study is being carried out by a Science and Technology Definition selected by NASA HQ and by an engineering design team at the Jet Propulsion Laboratory.

Continue Reading →

Abiotic O2 Levels on Planets Around F, G, K, and M Stars: Possible False Positives for Life? (the Astrophysical Journal, 2015)

In the search for life on Earth-like planets around other stars, the first (and likely only) information will come from the spectroscopic characterization of the planet’s atmosphere. Of the countless number of chemical species terrestrial life produces, only a few have the distinct spectral features and the necessary atmospheric abundance to be detectable. The easiest of these species to observe in Earth’s atmosphere is O2 (and its photochemical byproduct, O3).

Continue Reading →

A Ground-Based Albedo Upper Limit for HD 189733b From Polarimetry (the Astrophysical Journal, 2015)

We present 50 nights of polarimetric observations of HD 189733 in the B band using the POLISH2 aperture-integrated polarimeter at the Lick Observatory Shane 3-m telescope. This instrument, commissioned in 2011, is designed to search for Rayleigh scattering from short-period exoplanets due to the polarized nature of scattered light. Since these planets are spatially unresolvable from their host stars, the relative contribution of the planet-to-total system polarization is expected to vary with an amplitude of the order of 10 parts per million (ppm) over the course of the orbit.

Continue Reading →

3D Modeling of GJ1214b’s Atmosphere: Vertical Mixing Driven by an Anti-Hadley Circulation (The Astrophysical Journal, 2015)

GJ1214b is a warm sub-Neptune transiting in front of a nearby M dwarf star. Recent observations indicate the presence of high and thick clouds or haze whose presence requires strong atmospheric mixing. In order to understand the transport and distribution of such clouds/haze, we study the atmospheric circulation and the vertical mixing of GJ1214b with a 3D General Circulation Model for cloud-free hydrogen-dominated atmospheres (metallicity of 1, 10, and 100 times the solar value) and for a water-dominated atmosphere. We analyze the effect of the atmospheric metallicity on the thermal structure and zonal winds. We also analyze the zonal mean meridional circulation and show that it corresponds to an anti-Hadley circulation in most of the atmosphere with upwelling at mid-latitude and downwelling at the equator on average.

Continue Reading →

3D Modeling of GJ1214b’s Atmosphere: Formation of Inhomogeneous High Clouds and Observational Implications (the Astrophysical Journal Letters, 2015)

The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator.

Continue Reading →

The Center of Light: Spectroastrometric Detection of Exomoons (the Astrophysical Journal, 2015)

Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, “spectroastrometry.” This new application of this technique could be used to detect an exomoon, to determine the exomoon’s orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon.

Continue Reading →

Selenium isotope ratios, redox changes and biological productivity across the end-Permian mass extinction (Chemical Geology, 2015)

Our data show a small positive excursion in δ82/78Se prior to the extinction, consistent with local euxinia. However, this is followed by a significant negative excursion with a minimum of −1.8‰ (relative to NIST SRM 3149), immediately preceding the principal extinction horizon. A net fractionation of this magnitude likely resulted from partial reduction of Se oxyanions dissolved in the water column. Due to their low abundance, Se oxyanions are rapidly scavenged in anoxic basins or regions of high biological productivity with little net isotopic fractionation. We therefore interpret the uniquely negative fractionations in this section as an indicator for relatively oxygenated conditions in this marine basin at the time when biological productivity declined.

Continue Reading →

Detecting and Constraining N2 Abundances in Planetary Atmospheres Using Collisional Pairs (the Astrophysical Journal, 2015)

Characterizing the bulk atmosphere of a terrestrial planet is important for determining surface pressure and potential habitability. Molecular nitrogen (N2) constitutes the largest fraction of Earth’s atmosphere and is likely to be a major constituent of many terrestrial exoplanet atmospheres. Due to its lack of significant absorption features, N2 is extremely difficult to remotely detect. However, N2 produces an N2–N2 collisional pair, (N2)2, which is spectrally active. Here we report the detection of (N2)2 in Earth’s disk-integrated spectrum.

Continue Reading →

The evolution of the global selenium cycle: Secular trends in Se isotopes and abundances (Geochimica et Cosmochimica Acta, 2015)

Here we use Se isotopic and abundance measurements of marine and non-marine mudrocks to reconstruct the evolution of the biogeochemical Se cycle from ∼3.2 Gyr onwards. The six stable isotopes of Se are predominantly fractionated during redox reactions under suboxic conditions, which makes Se a potentially valuable new tool for identifying intermediate stages from an anoxic to a fully oxygenated world. δ82/78Se shows small fractionations of mostly less than 2‰ throughout Earth’s history and all are mass-dependent within error. In the Archean, especially after 2.7 Gyr, we find an isotopic enrichment in marine (+0.37 ± 0.27‰) relative to non-marine samples (−0.28 ± 0.67‰), paired with increasing Se abundances.

Continue Reading →

Atmospheric Heat Redistribution and Collapse on Tidally Locked Rocky Planets (the Astrophysical Journal, 2015)

Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospheric collapse at Earth’s stellar flux are obtained that are around five times higher (0.14 bar) than previous gray gas estimates. These results provide constraints on atmospheric stability that will aid in future interpretation of observations and exoplanet habitability modeling.

Continue Reading →

Records of geomagnetism, climate, and tectonics across a Paleoarchean erosion surface (Earth & Planetary Science Letters, 2015)

Our results show that the ∼3350 Ma Euro Basalt preserves a shallow magnetic inclination that appears to have formed as a result of early seafloor hydrothermal alteration, suggesting that the evaporitic carbonate platform of the conformably underlying Strelley Pool Formation was deposited in a near-equatorial location. This is consistent with (although does not require) late Paleoarchean climatic zoning, low orbital obliquity, and a geocentric axial dipole (GAD) field geometry similar to that of the Phanerozoic. The Euro Basalt paleopole overlaps with previously published Paleoarchean poles from the East Pilbara craton and with time-equivalent poles reported from the Barberton Greenstone Belt of the Kaapvaal craton, supporting the existence of a Paleoarchean Vaalbara continental aggregation.

Continue Reading →

Detecting Differential Rotation and Starspot Evolution on the M Dwarf GJ 1243 With Kepler (The Astrophysical Journal, 2015)

We present an analysis of the starspots on the active M4 dwarf GJ 1243, using 4 years of time series photometry from Kepler. A rapid P = 0.592596 ± 0.00021 days rotation period is measured due to the ~2.2% starspot-induced flux modulations in the light curve. We first use a light curve modeling approach, using a Monte Carlo Markov Chain sampler to solve for the longitudes and radii of the two spots within 5 day windows of data

Continue Reading →

Comparison of “Warm and Wet” and “Cold and Icy” Scenarios for Early Mars in a 3‐d Climate Model (JGR Planets, 2015)

We use a 3‐D general circulation model to compare the primitive Martian hydrological cycle in “warm and wet” and “cold and icy” scenarios. In the warm and wet scenario, an anomalously high solar flux or intense greenhouse warming artificially added to the climate model are required to maintain warm conditions and an ice‐free northern ocean. Precipitation shows strong surface variations, with high rates around Hellas basin and west of Tharsis but low rates around Margaritifer Sinus (where the observed valley network drainage density is nonetheless high). In the cold and icy scenario, snow migration is a function of both obliquity and surface pressure, and limited episodic melting is possible through combinations of seasonal, volcanic, and impact forcing. At surface pressures above those required to avoid atmospheric collapse (∼0.5 bar) and moderate to high obliquity, snow is transported to the equatorial highland regions where the concentration of valley networks is highest. Snow accumulation in the Aeolis quadrangle is high, indicating an ice‐free northern ocean is not required to supply water to Gale crater. At lower surface pressures and obliquities, both H2O and CO2 are trapped as ice at the poles and the equatorial regions become extremely dry. The valley network distribution is positively correlated with snow accumulation produced by the cold and icy simulation at 41.8∘ obliquity but uncorrelated with precipitation produced by the warm and wet simulation. Because our simulations make specific predictions for precipitation patterns under different climate scenarios, they motivate future targeted geological studies.

Continue Reading →

13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan (Icarus, 2015)

The ratios of the stable isotopes that comprise each chemical species in Titan’s atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation – organic aerosol formation and subsequent deposition onto the surface of Titan – has not been considered due to insufficient data regarding fractionation during aerosol formation.

Continue Reading →

Evolution of the Earth: Plate Tectonics Through Time (Treatise on Geophysics, 2nd Edition, 2015)

The tectonic mechanisms of heat escape have evolved over time as the Earth’s interior cooled. The Earth condensed from rock vapor over liquid magma immediately following the Moon-forming impact, ~ 4.5 billion years ago. The liquid magma convected vigorously and cooled rapidly until solids formed in the deep mantle. Multiple layers of clouds made the atmosphere opaque, so heat escaped slowly. Tidal dissipation maintained a thin solid layer in the deep mantle over a few million years until the Moon moved far enough away that dissipation no longer balance the heat lost to space. Over a few more million years, the Earth cooled to mostly solid mush capped solid rock.

Continue Reading →