Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels (Nature Geoscience, 2016)

Here, we calculate absolute Archaean barometric pressure using the size distribution of gas bubbles in basaltic lava flows that solidified at sea level ∼2.7 Gyr in the Pilbara Craton, Australia. Our data indicate a surprisingly low surface atmospheric pressure of Patm = 0.23 ± 0.23 (2σ) bar, and combined with previous studies suggests ∼0.5 bar as an upper limit to late Archaean Patm. The result implies that the thin atmosphere was rich in auxiliary greenhouse gases and that Patm fluctuated over geologic time to a previously unrecognized extent.

Continue Reading →

Transit timing to first order in eccentricity (The Astrophysical Journal, 2016)

Characterization of transiting planets with transit timing variations (TTVs) requires understanding how to translate the observed TTVs into masses and orbital elements of the planets. This can be challenging in multi-planet transiting systems, but fortunately these systems tend to be nearly plane-parallel and low eccentricity. Here we present a novel derivation of analytic formulae for TTVs that are accurate to first order in the planet-star mass ratios and in the orbital eccentricities. These formulae are accurate in proximity to first order resonances, as well as away from resonance, and compare well with more computationally expensive N-body integrations in the low eccentricity, low mass-ratio regime when applied to simulated and to actual multi-transiting Kepler planet systems. We make code available for implementing these formulae.

Continue Reading →

The inner edge of the habitable zone for synchronously rotating planets around low-mass stars using general circulation models (The Astrophysical Journal, 2016)

Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period.

Continue Reading →

The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f (Astrobiology, 2016)

As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f, a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00⩽e⩽0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using LMD Generic GCM indicate that with 3 bars of CO2 in its atmosphere, Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60∘ and 90∘). A climate similar to modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5-bar levels. In a low-CO2 case, simulations with CCSM4 and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bars would be required to distribute enough heat to the night side of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet’s substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f.

Continue Reading →

Did Jupiter’s Core Form in the Innermost Parts of the Sun’s Protoplanetary Disk? (MNRAS, 2016)

Jupiter’s core is generally assumed to have formed beyond the snow line. Here we consider an alternative scenario, that Jupiter’s core may have accumulated in the innermost parts of the protoplanetary disk. A growing body of research suggests that small particles (“pebbles”) continually drift inward through the disk. If a fraction of drifting pebbles is trapped at the inner edge of the disk a several Earth-mass core can quickly grow. Subsequently, the core may migrate outward beyond the snow line via planet-disk interactions. Of course, to reach the outer Solar System Jupiter’s core must traverse the terrestrial planet-forming region.

Continue Reading →

The Need for Laboratory Work to Aid in The Understanding of Exoplanetary Atmospheres (ArXiv, 2016)

Advancements in our understanding of exoplanetary atmospheres, from massive gas giants down to rocky worlds, depend on the constructive challenges between observations and models. We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize the atmospheric structure, composition, and circulation of these worlds. These improvements stem from significant investments in new missions and facilities, such as JWST and the several planned ground-based extremely large telescopes. However, while exoplanet science currently has a wide range of sophisticated models that can be applied to the tide of forthcoming observations, the trajectory for preparing these models for the upcoming observational challenges is unclear. Thus, our ability to maximize the insights gained from the next generation of observatories is not certain.

Continue Reading →

Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production (The Astrophysical Journal, 2016)

O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 μm) in conjunction with CO2 (1.6, 2.0, 4.3 μm) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 μm could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 μm, CO2 at 2.0 and 4.3 μm, and O4 at 1.27 μm are all stronger features in transmission than O2/O3 and could be detected with S/Ns gsim 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 μm) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.

Continue Reading →