A Search for Refraction in Kepler Photometry of Gas Giants (Research Notes of the AAS, 2018)



VPL Authors

Full Citation: Sheets, H. A., Jacob, L., Cowan, N. B., & Deming, D. (2018). A Search for Refraction in Kepler Photometry of Gas Giants. Research Notes of the AAS, 2(3), 153. https://doi.org/10.3847/2515-5172/aadcb1

Abstract: Refraction can lead to a brightening just before ingress and just after egress of a transit, as light passes through the exoplanet’s atmosphere and is refracted into our line of sight (Sidis & Sari 2010; Misra & Meadows 2014; Misra et al. 2014; Dalba 2017; Alp & Demory 2018). Refraction just outside of transit has been seen and modeled in our own solar system during transits of Venus (Pasachoff et al. 2011; García Muñoz & Mills 2012; Tanga et al. 2012). For short-period planets, the model of (Sidis & Sari 2010, hereafter S&S) implies refraction peaks typically under 100 parts per million (ppm) and comparable in duration to ingress and egress. Kepler photometry (Borucki et al. 2010) currently provides the best opportunity for detecting refraction. We search for the signature of refraction just outside of transit in Kepler photometry of 45 gas giants and firmly rule out the S&S model for four candidates.

We select Kepler Objects of Interest (KOIs) with radii at least twice that of Earth for which the S&S Equation (30) implies a peak effect greater than 10 parts per million (ppm), adjusted for Rayleigh scattering using their Equations (40)–(45). We eliminate KOIs with grazing transits as well as those identified in Ford et al. (2012), Mazeh et al. (2013), and Holczer et al. (2016) as having significant transit timing variations. We also eliminate a few KOIs identified by Holczer et al. (2016) as likely planetary false positives based on the behavior of the light curves, leaving 45 planet candidates. To calculate the expected effect, we adopt the masses predicted in Chen & Kipping (2018).

URL: https://doi.org/10.3847/2515-5172/aadcb1

Leave a Reply