Abiotic Formation of O2 and O3 in High-CO2 Terrestrial Atmospheres (Astronomy and Astrophysics, 2007)



VPL Authors

Full Citation:
Segura, A., Meadows, V. S., Kasting, J. F., Crisp, D., & Cohen, M. (2007). Abiotic formation of O2and O3in high-CO2terrestrial atmospheres. Astronomy & Astrophysics, 472(2), 665–679. https://doi.org/10.1051/0004-6361:20066663

Abstract:
Previous research has indicated that high amounts of ozone (O3) and oxygen (O2) may be produced abiotically in atmospheres with high concentrations of CO2. The abiotic production of these two gases, which are also characteristic of photosynthetic life processes, could pose a potential "false-positive" for remote-sensing detection of life on planets around other stars.We show here that such false positives are unlikely on any planet that possesses abundant liquid water, as rainout of oxidized species onto a reduced planetary surface should ensure that atmospheric H2 concentrations remain relatively high, and that O2 and O3 remain low. Our aim is to determine the amount of O3 and O2 formed in a high CO2 atmosphere for a habitable planet without life. We use a photochemical model that considers hydrogen (H2) escape and a detailed hydrogen balance to calculate the O2 and O3 formed on planets with 0.2 of CO2 around the Sun, and 0.02, 0.2 and 2 bars of CO2 around a young Sun-like star with higher UV radiation. The concentrations obtained by the photochemical model were used as input in a radiative transfer model that calculated the spectra of the modeled planets. The O3 and O2 concentrations in the simulated planets are extremely small, and unlikely to produce a detectable signature in the spectra of those planets. We conclude that with a balanced hydrogen budget, and for planets with an active hydrological cycle, abiotic formation of O2 and O3 is unlikely to create a possible false positive for life detection in either the visible/near-infrared or mid-infrared wavelength regimes.

URL:
https://doi.org/10.1051/0004-6361:20066663

VPL Research Tasks:
Task C: The Habitable Planet