A Limited Habitable Zone for Complex Life (The Astrophysical Journal, 2019)

The habitable zone (HZ) is commonly defined as the range of distances from a host star within which liquid water, a key requirement for life, may exist on a planet’s surface. Substantially more CO2 than present in Earth’s modern atmosphere is required to maintain clement temperatures for most of the HZ, with several bars required at the outer edge. However, most complex aerobic life on Earth is limited by CO2 concentrations of just fractions of a bar. At the same time, most exoplanets in the traditional HZ reside in proximity to M dwarfs, which are more numerous than Sun-like G dwarfs but are predicted to promote greater abundances of gases that can be toxic in the atmospheres of orbiting planets, such as carbon monoxide (CO). Here we show that the HZ for complex aerobic life is likely limited relative to that for microbial life. We use a 1D radiative-convective climate and photochemical models to circumscribe a Habitable Zone for Complex Life (HZCL) based on known toxicity limits for a range of organisms as a proof of concept. We find that for CO2 tolerances of 0.01, 0.1, and 1 bar, the HZCL is only 21%, 32%, and 50% as wide as the conventional HZ for a Sun-like star, and that CO concentrations may limit some complex life throughout the entire HZ of the coolest M dwarfs. These results cast new light on the likely distribution of complex life in the universe and have important ramifications for the search for exoplanet biosignatures and technosignatures.

Continue Reading →

Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production (The Astrophysical Journal, 2016)

O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by James Webb Space Telescope (JWST). If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 μm) in conjunction with CO2 (1.6, 2.0, 4.3 μm) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 μm could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 μm, CO2 at 2.0 and 4.3 μm, and O4 at 1.27 μm are all stronger features in transmission than O2/O3 and could be detected with S/Ns gsim 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 μm) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.

Continue Reading →

Remote life-detection criteria, habitable zone boundaries, and the frequency of Earth-like planets around M and late K stars (PNAS, 2013)

National Aeronautics and Space Administration’s (NASA) Kepler Space Telescope has detected over 3,000 planet candidates, about a dozen of which are probably rocky planets within the liquid-water habitable zones of their parent stars. Climate-modeling calculations discussed here shed light on the width of that zone. Within the next several years, NASA may obtain spectra of nearby transiting Earth-sized planets around M stars, using its James Webb Space Telescope. NASA hopes to build an even more capable space telescope to perform direct imaging of Earth-like exoplanets and take spectra of their atmospheres. Once data are obtained from either of these missions, correct interpretation of possible biomarker gases will become critical. We discuss here how those interpretations might be made.

Continue Reading →