Toward Complete Characterization: Prospects for Directly Imaging Transiting Exoplanets (The Astronomical Journal, 2020)

High-contrast direct imaging of exoplanets can provide many important observables, including measurements of the orbit, spectra that probe the lower layers of the atmosphere, and phase variations of the planet, but cannot directly measure planet radius or mass. Our future understanding of directly imaged exoplanets will therefore rely on extrapolated models of planetary atmospheres and bulk composition, which need robust calibration. We estimate the population of extrasolar planets that could serve as calibrators for these models. Critically, this population of “standard planets” must be accessible to both direct imaging and the transit method, allowing for radius measurement.

Continue Reading →

A Search for Exozodiacal Clouds with Kepler (The Astrophysical Journal, 2013)

Here we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3-sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters.

Continue Reading →