Liquid water oceans are at the center of our search for life on exoplanets because water is a strict requirement for life as we know it. However, oceans are dynamic habitats—and some oceans may be better hosts for life than others. In Earth’s ocean, circulation transports essential nutrients such as phosphate and is a first-order control on the distribution and productivity of life. Of particular importance is upward flow from the dark depths of the ocean in response to wind-driven divergence in surface layers.
Dorian Abbot and postdoctoral fellow Stephanie Olson’s recent publication “Oceanographic Considerations for Exoplanet Life Detection” has been receiving some press…
he Gaia hypothesis postulates that life regulates its environment to be favorable for its own survival. Most planets experience numerous perturbations throughout their lifetimes such as asteroid impacts, volcanism, and the evolution of their host star’s luminosity. For the Gaia hypothesis to be viable, life must be able to keep the conditions of its host planet habitable, even in the face of these challenges. ExoGaia, a model created to investigate the Gaia hypothesis, has been previously used to demonstrate that a randomly mutating biosphere is in some cases capable of maintaining planetary habitability. However, those model scenarios assumed that all non-biological planetary parameters were static, neglecting the inevitable perturbations that real planets would experience. To see how life responds to climate perturbations to its host planet, we created three climate perturbations in ExoGaia: one rapid cooling of a planet and two heating events, one rapid and one gradual.
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars are favorable for transmission spectroscopy. In this work, we quantify the effect that water clouds have on the amplitude of water vapor transmission spectral features of terrestrial exoplanets orbiting M dwarf stars. To do so, we make synthetic transmission spectra from general circulation model (GCM) experiments of tidally locked planets. We improve upon previous work by considering how varying a broad range of planetary parameters affects transmission spectra. We find that clouds lead to a 10100 times increase in the number of transits required to detect water features with the James Webb Space Telescope (JWST) with varying rotation period, incident stellar flux, surface pressure, planetary radius, and surface gravity. We also find that there is a strong increase in the dayside cloud coverage in our GCM simulations with rotation periods gsim12 days for planets with Earth’s radius. This increase in cloud coverage leads to even stronger muting of spectral features for slowly rotating exoplanets orbiting M dwarf stars. We predict that it will be extremely challenging to detect water transmission features in the atmospheres of terrestrial exoplanets in the habitable zone of M dwarf stars with JWST. However, species that are well-mixed above the cloud deck (e.g., CO2 and CH4) may still be detectable on these planets with JWST.
In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into “Eyeball” states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat poleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanet atmospheres. This theory is built on the work of Jansen & Ferrari and determines how unstable the atmosphere is to baroclinic instability (the baroclinic “criticality”) through a balance between the baroclinic eddy heat flux and radiative heating/cooling. We compare our scaling theory to General Circulation Model (GCM) simulations and find that the theoretical predictions for equator-to-pole temperature contrast and bulk lapse rate broadly agree with GCM experiments with varying rotation rate and surface pressure throughout the baroclincally unstable regime. Our theoretical results show that baroclinic instabilities are a strong control of heat transport in the atmospheres of Earth-like exoplanets, and our scalings can be used to estimate the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanets. These scalings can be tested by spectroscopic retrievals and full-phase light curves of terrestrial exoplanets with future space telescopes.
A rigorous definition of the habitable zone and its dependence on planetary properties is part of the search for habitable exoplanets. In this work, we use the general circulation model ExoCAM to determine how the inner edge of the habitable zone of tidally locked planets orbiting M dwarf stars depends on planetary radius, surface gravity, and surface pressure. We find that the inner edge of the habitable zone for more massive planets occurs at higher stellar irradiation, as found in previous 1D simulations. We also determine the relative effects of varying planetary radius and surface gravity. Increasing the planetary radius leads to a lower planetary albedo and warmer climate, pushing the inner edge of the habitable zone to lower stellar irradiation. This results from a change in circulation regime that leads to the disruption of the thick, reflective cloud deck around the substellar point. Increasing gravity increases the outgoing longwave radiation, which moves the inner edge of the habitable zone to higher stellar irradiation. This is because the column mass of water vapor decreases with increasing gravity, leading to a reduction in the greenhouse effect. The effect of gravity on the outgoing longwave radiation is stronger than the effect of radius on the planetary albedo, so that increasing gravity and radius together causes the inner edge of the habitable zone to move to higher stellar irradiation. Our results show that the inner edge of the habitable zone for more massive terrestrial planets occurs at a larger stellar irradiation.
Robustly modeling the inner edge of the habitable zone is essential for determining the most promising potentially habitable exoplanets for atmospheric characterization. Global climate models (GCMs) have become the standard tool for calculating this boundary, but divergent results have emerged among the various GCMs. In this study, we perform an intercomparison of standard GCMs used in the field on a rapidly rotating planet receiving a G-star spectral energy distribution and on a tidally locked planet receiving an M-star spectral energy distribution. Experiments both with and without clouds are examined. We find relatively small difference (within 8 K) in global-mean surface temperature simulation among the models in the G-star case with clouds. In contrast, the global-mean surface temperature simulation in the M-star case is highly divergent (2030 K). Moreover, even differences in the simulated surface temperature when clouds are turned off are significant. These differences are caused by differences in cloud simulation and/or radiative transfer, as well as complex interactions between atmospheric dynamics and these two processes. For example we find that an increase in atmospheric absorption of shortwave radiation can lead to higher relative humidity at high altitudes globally and, therefore, a significant decrease in planetary radiation emitted to space. This study emphasizes the importance of basing conclusions about planetary climate on simulations from a variety of GCMs and motivates the eventual comparison of GCM results with terrestrial exoplanet observations to improve their performance.
The recent detections of temperate terrestrial planets orbiting nearby stars and the promise of characterizing their atmospheres motivate a need to understand how the diversity of possible planetary parameters affects the climate of terrestrial planets. In this work, we investigate the atmospheric circulation and climate of terrestrial exoplanets orbiting both Sun-like and M dwarf stars over a wide swath of possible planetary parameters, including the planetary rotation period, surface pressure, incident stellar flux, surface gravity, planetary radius, and cloud particle size. We do so using a general circulation model (GCM) that includes nongray radiative transfer and the effects of clouds. The results from this suite of simulations generally show qualitatively similar dependencies of circulation and climate on planetary parameters to idealized GCMs, with quantitative differences due to the inclusion of additional model physics. Notably, we find that the effective cloud particle size is a key unknown parameter that can greatly affect the climate of terrestrial exoplanets. We confirm a transition between low and high dayside cloud coverage of synchronously rotating terrestrial planets with increasing rotation period. We determine that this cloud transition is due to eddy-driven convergence near the substellar point and should not be parameterization dependent. Finally, we compute full-phase light curves from our simulations of planets orbiting M dwarf stars, finding that changing incident stellar flux and rotation period affect observable properties of terrestrial exoplanets. Our GCM results can guide expectations for planetary climate over the broad range of possible terrestrial exoplanets that will be observed with future space telescopes.
The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spinorbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.