Low-mass stars show evidence of vigorous magnetic activity in the form of large flares and coronal mass ejections. Such space weather events may have important ramifications for the habitability and observational fingerprints of exoplanetary atmospheres. Here, using a suite of three-dimensional coupled chemistry–climate model simulations, we explore effects of time-dependent stellar activity on rocky planet atmospheres orbiting G, K and M dwarf stars. We employ observed data from the MUSCLES campaign and the Transiting Exoplanet Survey Satellite and test a range of rotation period, magnetic field strength and flare frequency assumptions. We find that recurring flares drive the atmospheres of planets around K and M dwarfs into chemical equilibria that substantially deviate from their pre-flare regimes, whereas the atmospheres of G dwarf planets quickly return to their baseline states. Interestingly, simulated O2-poor and O2-rich atmospheres experiencing flares produce similar mesospheric nitric oxide abundances, suggesting that stellar flares can highlight otherwise undetectable chemical species. Applying a radiative transfer model to our chemistry–climate model results, we find that flare-driven transmission features of bio-indicating chemical species, such as nitrogen dioxide, nitrous oxide and nitric acid, show particular promise for detection by future instruments.
The NASA Nexus for Exoplanet Systems Science (NExSS) and Sellers Exoplanet Environments Collaboration recently hosted the TRAPPIST Habitable Atmospheres Intercomparison…
Here we use a 3‐D climate system model to study the habitability of Earth‐like planets orbiting in circumbinary systems. In the most extreme cases, Earth‐like planets in circumbinary systems could experience variations in the incident stellar flux of up to ~50% on ~100‐day timescales. However, we find that Earth‐like planets, having abundant surface liquid water, are generally effective at buffering against these time‐dependent changes in the stellar irradiation due to the high thermal inertia of oceans compared with the relatively short periods of circumbinary‐driven variations in the received stellar flux.
We present self-consistent three-dimensional climate simulations of possible habitable states for the newly discovered habitable-zone Earth-sized planet TOI-700 d. We explore a variety of atmospheric compositions, pressures, and rotation states for both ocean-covered and completely desiccated planets in order to assess the planet’s potential for habitability. For all 20 of our simulated cases, we use our climate model outputs to synthesize transmission spectra, combined-light spectra, and integrated broadband phase curves. These climatologically informed observables will help the community assess the technological capabilities necessary for future characterization of this planetas well as similar transiting planets discovered in the futureand will provide a guide for distinguishing possible climate states if one day we do obtain sensitive spectral observations of a habitable planet around an M star. We find that TOI-700 d is a strong candidate for a habitable world and can potentially maintain temperate surface conditions under a wide variety of atmospheric compositions. Unfortunately, the spectral feature depths from the resulting transmission spectra and the peak flux and variations from our synthesized phase curves for TOI-700 d do not exceed 10 ppm. This will likely prohibit the James Webb Space Telescope from characterizing its atmosphere; however, this motivates the community to invest in future instrumentation that perhaps can one day reveal the true nature of TOI-700 d and to continue to search for similar planets around less distant stars.
The search for water-rich Earth-sized exoplanets around low-mass stars is rapidly gaining attention because they represent the best opportunity to characterize habitable planets in the near future. Understanding the atmospheres of these planets and determining the optimal strategy for characterizing them through transmission spectroscopy with our upcoming instrumentation is essential in order to constrain their environments. For this study, we present simulated transmission spectra of tidally locked Earth-sized ocean-covered planets around late-M to mid-K stellar spectral types, utilizing the results of general circulation models previously published by Kopparapu et al. as inputs for our radiative transfer calculations performed using NASA’s Planetary Spectrum Generator (psg.gsfc.nasa.gov). We identify trends in the depth of H2O spectral features as a function of planet surface temperature and rotation rate. These trends allow us to calculate the exposure times necessary to detect water vapor in the atmospheres of aquaplanets through transmission spectroscopy with the upcoming James Webb Space Telescope as well as several future flagship space telescope concepts under consideration (the Large UV Optical Infrared Surveyor and the Origins Space Telescope) for a target list constructed from the Transiting Exoplanet Survey Satellite (TESS) Input Catalog (TIC). Our calculations reveal that transmission spectra for water-rich Earth-sized planets around low-mass stars will be dominated by clouds, with spectral features <20 ppm, and only a small subset of TIC stars would allow for the characterization of an ocean planet in the habitable zone. We thus present a careful prioritization of targets that are most amenable to follow-up characterizations with next-generation instrumentation, in order to assist the community in efficiently utilizing precious telescope time.
Upcoming telescopes such as the James Webb Space Telescope (JWST), the European Extremely Large Telescope (E-ELT), the Thirty Meter Telescope (TMT) or the Giant Magellan Telescope (GMT) may soon be able to characterize, through transmission, emission or reflection spectroscopy, the atmospheres of rocky exoplanets orbiting nearby M dwarfs. One of the most promising candidates is the late M-dwarf system TRAPPIST-1, which has seven known transiting planets for which transit timing variation (TTV) measurements suggest that they are terrestrial in nature, with a possible enrichment in volatiles. Among these seven planets, TRAPPIST-1e seems to be the most promising candidate to have habitable surface conditions, receiving ?66?% of the Earth’s incident radiation and thus needing only modest greenhouse gas inventories to raise surface temperatures to allow surface liquid water to exist. TRAPPIST-1e is, therefore, one of the prime targets for the JWST atmospheric characterization. In this context, the modeling of its potential atmosphere is an essential step prior to observation. Global climate models (GCMs) offer the most detailed way to simulate planetary atmospheres. However, intrinsic differences exist between GCMs which can lead to different climate prediction and thus observability of gas and/or cloud features in transmission and thermal emission spectra. Such differences should preferably be known prior to observations. In this paper we present a protocol to intercompare planetary GCMs. Four testing cases are considered for TRAPPIST-1e, but the methodology is applicable to other rocky exoplanets in the habitable zone. The four test cases included two land planets composed of modern-Earth and pure-CO2 atmospheres and two aqua planets with the same atmospheric compositions. Currently, there are four participating models (LMDG, ROCKE-3D, ExoCAM, UM); however, this protocol is intended to let other teams participate as well.
Small exoplanets of nearby M-dwarf stars present the possibility of finding and characterizing habitable worlds within the next decade. TRAPPIST-1, an ultracool M-dwarf star, was recently found to have seven Earth-sized planets of predominantly rocky composition. The planets e, f, and g could have a liquid water ocean on their surface given appropriate atmospheres of N2 and CO2. In particular, climate models have shown that the planets e and f can sustain a global liquid water ocean, for ?0.2 bar CO2 plus 1 bar N2, or ?2 bar CO2, respectively. These atmospheres are irradiated by ultraviolet emission from the star’s moderately active chromosphere, and the consequence of this irradiation is unknown. Here we show that chemical reactions driven by the irradiation produce and maintain more than 0.2 bar O2 and 0.05 bar CO if the CO2 is ?0.1 bar. The abundance of O2 and CO can rise to more than 1 bar under certain boundary conditions. Because of this O2CO runaway, habitable environments on the TRAPPIST-1 planets entail an O2- and CO-rich atmosphere with coexisting O3. The only process that would prevent runaway is direct recombination of O2 and CO in the ocean, a reaction that is facilitated biologically. Our results indicate that O2, O3, and CO should be considered together with CO2 as the primary molecules in the search for atmospheric signatures from temperate and rocky planets of TRAPPIST-1 and other M-dwarf stars.
We are on the verge of characterizing the atmospheres of terrestrial exoplanets in the habitable zones of M dwarf stars. Due to their large planet-to-star radius ratios and higher frequency of transits, terrestrial exoplanets orbiting M dwarf stars are favorable for transmission spectroscopy. In this work, we quantify the effect that water clouds have on the amplitude of water vapor transmission spectral features of terrestrial exoplanets orbiting M dwarf stars. To do so, we make synthetic transmission spectra from general circulation model (GCM) experiments of tidally locked planets. We improve upon previous work by considering how varying a broad range of planetary parameters affects transmission spectra. We find that clouds lead to a 10100 times increase in the number of transits required to detect water features with the James Webb Space Telescope (JWST) with varying rotation period, incident stellar flux, surface pressure, planetary radius, and surface gravity. We also find that there is a strong increase in the dayside cloud coverage in our GCM simulations with rotation periods gsim12 days for planets with Earth’s radius. This increase in cloud coverage leads to even stronger muting of spectral features for slowly rotating exoplanets orbiting M dwarf stars. We predict that it will be extremely challenging to detect water transmission features in the atmospheres of terrestrial exoplanets in the habitable zone of M dwarf stars with JWST. However, species that are well-mixed above the cloud deck (e.g., CO2 and CH4) may still be detectable on these planets with JWST.
The TRAPPIST-1 system, consisting of an ultracool host star having seven known Earth-sized planets, will be a prime target for atmospheric characterization with the James Webb Space Telescope (JWST). However, the detectability of atmospheric molecular species may be severely impacted by the presence of clouds and/or hazes. In this work, we perform 3D general circulation model (GCM) simulations with the LMD-G model supplemented by 1D photochemistry simulations at the terminator with the Atmos model to simulate several possible atmospheres for TRAPPIST-1e, 1f, and 1g: (1) modern Earth, (2) Archean Earth, and (3) CO2-rich atmospheres. The JWST synthetic transit spectra were computed using the GSFC Planetary Spectrum Generator. We find that the TRAPPIST-1e, 1f, and 1g atmospheres, with clouds and/or hazes, could be detected using JWST’s NIRSpec Prism from the CO2 absorption line at 4.3 ?m in less than 15 transits at 3? or less than 35 transits at 5?. However, our analysis suggests that other gases would require hundreds (or thousands) of transits to be detectable. We also find that H2O, mostly confined in the lower atmosphere, is very challenging to detect for these planets or similar systems if the planets’ atmospheres are not in a moist greenhouse state. This result demonstrates that the use of GCMs, self-consistently taking into account the effect of clouds and subsaturation, is crucial to evaluate the detectability of atmospheric molecules of interest, as well as for interpreting future detections in a more global (and thus robust and relevant) approach.
Transit spectroscopy of terrestrial planets around nearby M dwarfs will be a primary goal of space missions in coming decades. Three-dimensional climate modeling has shown that slow-synchronous rotating terrestrial planets may develop thick clouds at the substellar point, increasing the albedo. For M dwarfs with T eff > 3000 K, such planets at the inner habitable zone (IHZ) have been shown to retain moist greenhouse conditions, with enhanced stratospheric water vapor (fH 2O > 10?3) and low Earth-like surface temperatures. However, M dwarfs also possess strong UV activity, which may effectively photolyze stratospheric H2O. Prior modeling efforts have not included the impact of high stellar UV activity on the H2O. Here, we employ a 1D photochemical model with varied stellar UV, to assess whether H2O destruction driven by high stellar UV would affect its detectability in transmission spectroscopy. Temperature and water vapor profiles are taken from published 3D climate model simulations for an IHZ Earth-sized planet around a 3300 K M dwarf with an N2H2O atmosphere; they serve as self-consistent input profiles for the 1D model. We explore additional chemical complexity within the 1D model by introducing other species into the atmosphere. We find that as long as the atmosphere is well-mixed up to 1 mbar, UV activity appears to not impact detectability of H2O in the transmission spectrum. The strongest H2O features occur in the James Webb Space Telescope MIRI instrument wavelength range and are comparable to the estimated systematic noise floor of ~50 ppm.
Planets that revolve around a binary pair of stars are known as circumbinary planets. The orbital motion of the stars around their center of mass causes a periodic variation in the total instellation incident upon a circumbinary planet. This study uses both an analytic and numerical energy balance model to calculate the extent to which this effect can drive changes in surface temperature on circumbinary terrestrial planets. We show that the amplitude of the temperature variation is largely constrained by the effective heat capacity, which corresponds to the ocean?to?land ratio on the planet. Planets with large ocean fractions should experience only modest warming and cooling of only a few degrees, which suggests that habitability cannot be precluded for such circumbinary planets. Planets with large land fractions that experience extreme periodic forcing could be prone to changes in temperature of tens of degrees or more, which could drive more extreme climate changes that inhibit continuously habitable conditions.
Planets residing in circumstellar habitable zones offer us the best opportunities to test hypotheses of life’s potential pervasiveness and complexity. Constraining the precise boundaries of habitability and its observational discriminants is critical to maximizing our chances at remote life detection with future instruments. Conventionally, calculations of the inner edge of the habitable zone (IHZ) have been performed using both 1D radiative-convective and 3D general circulation models. However, these models lack interactive 3D chemistry and do not resolve the mesosphere and lower thermosphere region of the upper atmosphere. Here, we employ a 3D high-top chemistry-climate model (CCM) to simulate the atmospheres of synchronously rotating planets orbiting at the inner edge of habitable zones of K- and M-dwarf stars (between T eff = 2600 and 4000 K). While our IHZ climate predictions are in good agreement with general circulation model studies, we find noteworthy departures in simulated ozone and HOx photochemistry. For instance, climates around inactive stars do not typically enter the classical moist greenhouse regime even with high (gsim10?3 mol mol?1) stratospheric water vapor mixing ratios, which suggests that planets around inactive M-stars may only experience minor water-loss over geologically significant timescales. In addition, we find much thinner ozone layers on potentially habitable moist greenhouse atmospheres, as ozone experiences rapid destruction via reaction with hydrogen oxide radicals. Using our CCM results as inputs, our simulated transmission spectra show that both water vapor and ozone features could be detectable by instruments NIRSpec and MIRI LRS on board the James Webb Space Telescope.
Habitability is a measure of an environment’s potential to support life, and a habitable exoplanet supports liquid water on its surface. However, a planet’s success in maintaining liquid water on its surface is the end result of a complex set of interactions between planetary, stellar, planetary system and even Galactic characteristics and processes, operating over the planet’s lifetime. In this chapter, we describe how we can now determine which exoplanets are most likely to be terrestrial, and the research needed to help define the habitable zone under different assumptions and planetary conditions. We then move beyond the habitable zone concept to explore a new framework that looks at far more characteristics and processes, and provide a comprehensive survey of their impacts on a planet’s ability to acquire and maintain habitability over time. We are now entering an exciting era of terrestiral exoplanet atmospheric characterization, where initial observations to characterize planetary composition and constrain atmospheres is already underway, with more powerful observing capabilities planned for the near and far future. Understanding the processes that affect the habitability of a planet will guide us in discovering habitable, and potentially inhabited, planets.
We use a one-dimensional (1D) cloud-free climate model to estimate habitable zone (HZ) boundaries for terrestrial planets of masses 0.1 ME and 5 ME around circumbinary stars of various spectral type combinations. Specifically, we consider binary systems with host spectral types F-F, F-G, F-K, F-M, G-G, G-K, G-M, K-K, K-M and M-M. Scaling the background N2 atmospheric pressure with the radius of the planet, we find that the inner edge of the HZ moves inwards toward the star for 5 ME compared to 0.1 ME planets for all spectral types. This is because the water-vapor column depth is smaller for larger planets and higher temperatures are needed before water vapor completely dominates the outgoing longwave radiation. The outer edge of the HZ changes little due to competing effects of the albedo and greenhouse effect. While these results are broadly consistent with the trend of single star HZ results for different mass planets, there are significant differences between single star and binary star systems for the inner edge of the HZ. Interesting combinations of stellar pairs from our 1D model results can be used to explore for in-depth climate studies with 3D climate models. We identify a common HZ stellar flux domain for all circumbinary spectral types.
The macroturbulent atmospheric circulation of Earth-like planets mediates their equator-to-pole heat transport. For fast-rotating terrestrial planets, baroclinic instabilities in the mid-latitudes lead to turbulent eddies that act to transport heat poleward. In this work, we derive a scaling theory for the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanet atmospheres. This theory is built on the work of Jansen & Ferrari and determines how unstable the atmosphere is to baroclinic instability (the baroclinic “criticality”) through a balance between the baroclinic eddy heat flux and radiative heating/cooling. We compare our scaling theory to General Circulation Model (GCM) simulations and find that the theoretical predictions for equator-to-pole temperature contrast and bulk lapse rate broadly agree with GCM experiments with varying rotation rate and surface pressure throughout the baroclincally unstable regime. Our theoretical results show that baroclinic instabilities are a strong control of heat transport in the atmospheres of Earth-like exoplanets, and our scalings can be used to estimate the equator-to-pole temperature contrast and bulk lapse rate of terrestrial exoplanets. These scalings can be tested by spectroscopic retrievals and full-phase light curves of terrestrial exoplanets with future space telescopes.
Orbital phase-dependent variations in thermal emission and reflected stellar energy spectra can provide meaningful constraints on the climate states of terrestrial extrasolar planets orbiting M dwarf stars. Spatial distributions of water vapor, clouds, and surface ice are controlled by climate. In turn, water, in each of its thermodynamic phases, imposes significant modulations to thermal and reflected planetary spectra. Here we explore these characteristic spectral signals, based on 3D climate simulations of Earth-sized aquaplanets orbiting M dwarf stars near the habitable zone. By using 3D models, we can self-consistently predict surface temperatures and the location of water vapor, clouds, and surface ice in the climate system. Habitable zone planets in M dwarf systems are expected to be in synchronous rotation with their host star and thus present distinct differences in emitted and reflected energy fluxes depending on the observed hemisphere. Here we illustrate that icy, temperate, and incipient runaway greenhouse climate states exhibit phase-dependent spectral signals that enable their characterization.
Orbital phase-dependent variations in thermal emission and reflected stellar energy spectra can provide meaningful constraints on the climate states of terrestrial extrasolar planets orbiting M dwarf stars. Spatial distributions of water vapor, clouds, and surface ice are controlled by climate. In turn, water, in each of its thermodynamic phases, imposes significant modulations to thermal and reflected planetary spectra. Here we explore these characteristic spectral signals, based on 3D climate simulations of Earth-sized aquaplanets orbiting M dwarf stars near the habitable zone. By using 3D models, we can self-consistently predict surface temperatures and the location of water vapor, clouds, and surface ice in the climate system. Habitable zone planets in M dwarf systems are expected to be in synchronous rotation with their host star and thus present distinct differences in emitted and reflected energy fluxes depending on the observed hemisphere. Here we illustrate that icy, temperate, and incipient runaway greenhouse climate states exhibit phase-dependent spectral signals that enable their characterization.
Robustly modeling the inner edge of the habitable zone is essential for determining the most promising potentially habitable exoplanets for atmospheric characterization. Global climate models (GCMs) have become the standard tool for calculating this boundary, but divergent results have emerged among the various GCMs. In this study, we perform an intercomparison of standard GCMs used in the field on a rapidly rotating planet receiving a G-star spectral energy distribution and on a tidally locked planet receiving an M-star spectral energy distribution. Experiments both with and without clouds are examined. We find relatively small difference (within 8 K) in global-mean surface temperature simulation among the models in the G-star case with clouds. In contrast, the global-mean surface temperature simulation in the M-star case is highly divergent (2030 K). Moreover, even differences in the simulated surface temperature when clouds are turned off are significant. These differences are caused by differences in cloud simulation and/or radiative transfer, as well as complex interactions between atmospheric dynamics and these two processes. For example we find that an increase in atmospheric absorption of shortwave radiation can lead to higher relative humidity at high altitudes globally and, therefore, a significant decrease in planetary radiation emitted to space. This study emphasizes the importance of basing conclusions about planetary climate on simulations from a variety of GCMs and motivates the eventual comparison of GCM results with terrestrial exoplanet observations to improve their performance.
CO2?driven changes to climate have occurred during many epochs of Earth’s history when the solar insolation, atmospheric CO2 concentration, and surface temperature of the planet were all significantly different than today. Each of these aspects affects the implied radiative forcings, climate feedbacks, and resultant changes in global mean surface temperature. Here we use a three?dimensional climate system model to study the effects of increasing CO2 on Earth’s climate, across many orders of magnitude of variation, and under solar inputs relevant for paleo, present, and future Earth scenarios. We find that the change in global mean surface temperature from doubling CO2 (i.e., the equilibrium climate sensitivity) may vary between 2.6 and 21.6 K over the course of Earth’s history. In agreement with previous studies, we find that the adjusted radiative forcing from doubling CO2 increases at high concentrations up to about 1.5 bars partial pressure, generally resulting in larger changes in the surface temperature. We also find that the cloud albedo feedback causes an abrupt transition in climate for warming atmospheres that depends both on the mean surface temperature and the total solar insolation. Climate sensitivity to atmospheric CO2 has probably varied considerably across Earth’s history.
Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period.