No Snowball Cycles at the Outer Edge of the Habitable Zone for Habitable Tidally Locked Planets (The Astrophysical Journal Letters, 2019)

In this Letter we will consider the effect of tidal locking on limit cycling between snowball and warm climate states, which has been suggested could occur for rapidly rotating planets in the outer regions of the habitable zone with low CO2 outgassing rates. Here, we use a 3D Global Climate Model that calculates silicate-weathering to show that tidally locked planets with an active carbon cycle will not experience limit cycling between warm and snowball states. Instead, they smoothly settle into “Eyeball” states with a small unglaciated substellar region. The size of this unglaciated region depends on the stellar irradiation, the CO2 outgassing rate, and the continental configuration. Furthermore, we argue that a tidally locked habitable zone planet cannot stay in a snowball state for a geologically significant time. This may be beneficial to the survival of complex life on tidally locked planets orbiting the outer edge of their stars, but might also make it less likely for complex life to arise.

Continue Reading →

No Snowball on Habitable Tidally Locked Planets (The Astrophysical Journal, 2017)

The TRAPPIST-1, Proxima Centauri, and LHS 1140 systems are the most exciting prospects for future follow-up observations of potentially inhabited planets. All of the planets orbit nearby M-stars and are likely tidally locked in 1:1 spin–orbit states, which motivates the consideration of the effects that tidal locking might have on planetary habitability. On Earth, periods of global glaciation (snowballs) may have been essential for habitability and remote signs of life (biosignatures) because they are correlated with increases in the complexity of life and in the atmospheric oxygen concentration. In this paper, we investigate the snowball bifurcation (sudden onset of global glaciation) on tidally locked planets using both an energy balance model and an intermediate-complexity global climate model. We show that tidally locked planets are unlikely to exhibit a snowball bifurcation as a direct result of the spatial pattern of insolation they receive. Instead, they will smoothly transition from partial to complete ice coverage and back. A major implication of this work is that tidally locked planets with an active carbon cycle should not be found in a snowball state. Moreover, this work implies that tidally locked planets near the outer edge of the habitable zone with low CO2 outgassing fluxes will equilibrate with a small unglaciated substellar region rather than cycling between warm and snowball states. More work is needed to determine how the lack of a snowball bifurcation might affect the development of life on a tidally locked planet.

Continue Reading →