Radiation of nitrogen-metabolizing enzymes across the tree of life tracks environmental transitions in Earth history (Geobiology, 2020)

Nitrogen is an essential element to life and exerts a strong control on global biological productivity. The rise and spread of nitrogen-utilizing microbial metabolisms profoundly shaped the biosphere on the early Earth. Here we reconciled gene and species trees to identify birth and horizontal gene transfer events for key nitrogen-cycling genes, dated with a time-calibrated tree of life, in order to examine the timing of the proliferation of these metabolisms across the tree of life. Our results provide new insights into the evolution of the early nitrogen cycle that expand on geochemical reconstructions. We observed widespread horizontal gene transfer of molybdenum-based nitrogenase back to the Archean, minor horizontal transfer of genes for nitrate reduction in the Archean, and an increase in the proliferation of genes metabolizing nitrite around the time of the Mesoproterozoic (∼1.5 Ga).

Continue Reading →

The Environmental Roots of Life on the Hadean Earth (In Planetary Astrobiology, 2020)

The origin of life is perhaps the most perplexing unanswered question in science. The main reason for this perplexity is the overlap of four critical components to life’s origin: when and where life emerged, how it formed, and what the earliest life forms looked like. Each of these components has their own set of questions that cross multiple disciplines. For example, insights into the question of when and where life began are predicated on the early Archaean rock record, which is limited due to metamorphism and erosion. With time, continued study of the rock record will reveal more about the…

Continue Reading →

Selection Is a Significant Driver of Gene Gain and Loss in the Pangenome of the Bacterial Genus Sulfurovum in Geographically Distinct Deep-Sea Hydrothermal Vents (mSystems, 2020)

To evaluate the influence of selection on gene content variation in hydrothermal vent microbial populations, we examined 22 metagenome-assembled genomes (MAGs) (70 to 97% complete) from the ubiquitous vent Epsilonbacteraeota genus Sulfurovum that were recovered from two deep-sea hydrothermal vent regions, Axial Seamount in the northeastern Pacific Ocean (13 MAGs) and the Mid-Cayman Rise in the Caribbean Sea (9 MAGs). Genes involved in housekeeping functions were highly conserved across Sulfurovum lineages. However, genes involved in environment-specific functions, and in particular phosphate regulation, were found mostly in Sulfurovum genomes from the Mid-Cayman Rise in the low-phosphate Atlantic Ocean environment, suggesting that nutrient limitation is an important selective pressure for these bacteria.

Continue Reading →

Genome-resolved Metagenomics and Metatranscriptomics Reveal Niche Differentiation in Functionally Redundant Microbial Communities at Deep-sea Hydrothermal Vents (Environmental Microbiology, 2019)

The structure and function of microbial communities inhabiting the subseafloor near hydrothermal systems are influenced by fluid geochemistry, geologic setting and fluid flux between vent sites, as well as biological interactions. Here, we used genome?resolved metagenomics and metatranscriptomics to examine patterns of gene abundance and expression and assess potential niche differentiation in microbial communities in venting fluids from hydrothermal vent sites at the Mid?Cayman Rise. We observed similar patterns in gene and transcript abundance between two geochemically distinct vent fields at the community level but found that each vent site harbours a distinct microbial community with differing transcript abundances for individual microbial populations. Through an analysis of metabolic pathways in 64 metagenome?assembled genomes (MAGs), we show that MAG transcript abundance can be tied to differences in metabolic pathways and to potential metabolic interactions between microbial populations, allowing for niche?partitioning and divergence in both population distribution and activity. Our results illustrate that most microbial populations have a restricted distribution within the seafloor, and that the activity of those microbial populations is tied to both genome content and abiotic factors.

Continue Reading →

Is the genetic landscape of the deep subsurface biosphere affected by viruses? (Frontiers in Microbiology, 2011)

Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

Continue Reading →