Here we use a 3‐D climate system model to study the habitability of Earth‐like planets orbiting in circumbinary systems. In the most extreme cases, Earth‐like planets in circumbinary systems could experience variations in the incident stellar flux of up to ~50% on ~100‐day timescales. However, we find that Earth‐like planets, having abundant surface liquid water, are generally effective at buffering against these time‐dependent changes in the stellar irradiation due to the high thermal inertia of oceans compared with the relatively short periods of circumbinary‐driven variations in the received stellar flux.