VPL Researcher Tyler Robinson (Northern Arizona University) was recently named as one of the 25 recipients of the 2021 Cottrell Scholar Award!…
The quest for both habitable and inhabited worlds beyond Earth is key to understanding the potential distribution of life in the universe. This ongoing search seeks to answer profound questions: Are we alone? How unique is Earth? Should the hunt for life beyond Earth uncover a multitude of habitable worlds and few (if any) inhabited ones, humanity would begin to understand just how lonely and fragile our situation is. On the other hand, if our hunt yields a true diversity of inhabited worlds, then we would learn something fundamental about the tenacity of life in the cosmos.
The characterization of rocky, Earth-like planets is an important goal for future large ground- and space-based telescopes. In support of developing an efficient observational strategy, we have applied Bayesian statistical inference to interpret the albedo spectrum of cloudy true-Earth analogs that include a diverse spread in their atmospheric water vapor mixing ratios. We focus on detecting water-bearing worlds by characterizing their atmospheric water vapor content via the strong 0.94 ?m H2O absorption feature, with several observational configurations. Water vapor is an essential signpost when assessing planetary habitability, and determining its presence is important in vetting whether planets are suitable for hosting life. We find that R = 140 spectroscopy of the absorption feature combined with a same-phase green-optical photometric point at 0.5250.575 ?m is capable of distinguishing worlds with less than 0.1× Earth-like water vapor levels from worlds with 1× Earth-like levels or greater at a signal-to-noise ratio of 5 or better with 2? confidence. This configuration can differentiate between 0.01× and 0.1× Earth-like levels when the signal-to-noise ratio is 10 or better at the same confidence. However, strong constraints on the water vapor mixing ratio remained elusive with this configuration even at a signal-to-noise of 15. We find that adding the same-phase optical photometric point does not significantly help characterize the H2O mixing ratio, but does enable an upper limit on atmospheric ozone levels. Finally, we find that a 0.94 ?m photometric point, instead of spectroscopy, combined with the green-optical point, fails to produce meaningful information about atmospheric water content.
To investigate water vapor detection for exoplanets, we generated reflectance spectra over a grid of water vapor column masses (given by the integral of a species’ mass density over the atmospheric column, yielding the mass of that species per unit area). As the depth of a gas spectral feature is, to a large degree, controlled by the absorption optical depth across the feature, varying the column mass is akin to varying feature strength. Our column mass grid spans 10?5101?g?cm?2, where the total gas and water vapor column masses for Earth are 1.0 × 103 g?cm?2 and 3?g?cm?2, respectively. We adopt 1 bar of total atmospheric pressure, assume molecular nitrogen is the background atmospheric gas, use an Earth-like surface gravity of 10?m?s?2, and assume a gray surface albedo of 0.3. Our calculations generally apply to scenarios where the water vapor column is measured above some opaque “surface” (e.g., a solid surface or planet-wide cloud deck). Quadrature-phase spectra were modeled with the widely used Spectral Mapping Atmospheric Radiative Transfer (SMART) model (developed by D.?Crisp; Meadows & Crisp 1996), which is a line-by-line, multiple-scattering radiative transfer tool.
coronagraph is an open-source Python package for generalized telescope noise modeling for extrasolar planet (exoplanet) science. This package is based on Interactive Data Language (IDL) code originally developed by T. Robinson (Robinson, 2018), and described in detail with science applications in (Robinson, Stapelfeldt, & Marley, 2016).
One-dimensional (vertical) models of planetary atmospheres typically balance the net solar and internal energy fluxes against the net thermal radiative and convective heat fluxes to determine an equilibrium thermal structure. Thus, simple models of shortwave and longwave (optical and infrared) radiative transport can provide insight into key processes operating within planetary atmospheres. Here, we develop a simple, analytic expression for both the downwelling thermal and net thermal radiative fluxes in a planetary troposphere. For thermal wavelengths, we assume that the atmosphere is non-scattering and that opacities are grey (i.e., wavelength-independent). Additionally, we adopt an atmospheric thermal structure that follows a modified dry adiabat as well as a physically-motivated power-law relationship between grey thermal optical depth and atmospheric pressure. To verify aspects of our analytic treatment, we compare our model to more sophisticated full physics tools as applied to Venus, Earth, and a cloudfree Jupiter, thereby exploring a diversity of atmospheric conditions. Next, we seek to better understand our analytic model by exploring how thermal radiative flux profiles respond to variations in key physical parameters, such as the total grey thermal optical depth of the atmosphere. Using energy balance arguments, we derive convective flux profiles for the tropospheres of all Solar System worlds with thick atmospheres, and propose a scaling that enables inter-comparison of these profiles. Lastly, we use our analytic treatment to discuss the validity of other simple models of convective fluxes in planetary atmospheres. Our new expressions build on decades of analytic modeling exercises in planetary atmospheres, and further prove the utility of simple, generalized tools in comparative planetology studies.
Earthshine is the dominant source of natural illumination on the surface of the Moon during lunar night, and at some locations within permanently shadowed regions (PSRs) near the poles that never receive direct sunlight. As such, earthshine has the potential to enable the scientific investigation and exploration of conditions in areas of the Moon that are either temporarily or permanently hidden from the Sun. Earthshine has also been used to refer to Earthlight reflected from the lunar surface, but in this study we use it to refer specifically to Earthlight incident at the Moon. Under certain circumstances, the heat flux from earthshine could also influence the transport and cold-trapping of volatiles present in the very coldest areas within PSRs. In this study, Earth’s spectral irradiance, as it would appear at the Moon in the solar reflectance band (0.3–3.0 µm) and at thermal emission wavelengths (3–50 µm), is examined with a suite of model image cubes and whole-disk spectra created using the Virtual Planetary Laboratory (VPL) three-dimensional (latitude, longitude and altitude) modeling capability
The TRAPPIST-1 planetary system provides an unprecedented opportunity to study terrestrial exoplanet evolution with the James Webb Space Telescope (JWST) and ground-based observatories. Since M dwarf planets likely experience extreme volatile loss, the TRAPPIST-1 planets may have highly evolved, possibly uninhabitable atmospheres. We used a versatile, 1D terrestrial planet climate model with line-by-line radiative transfer and mixing length convection (VPL Climate) coupled to a terrestrial photochemistry model to simulate environmental states for the TRAPPIST-1 planets. We present equilibrium climates with self-consistent atmospheric compositions and observational discriminants of postrunaway, desiccated, 10–100 bar O2- and CO2-dominated atmospheres, including interior outgassing, as well as for water-rich compositions
(The Astrophysical Journal, 2018)
“A group of leading researchers in astronomy, biology and geology have come together under NASA’s Nexus for Exoplanet System Science, or…
Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state—the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.
Proxima Centauri b provides an unprecedented opportunity to understand the evolution and nature of terrestrial planets orbiting M dwarfs. Although Proxima Cen b orbits within its star’s habitable zone, multiple plausible evolutionary paths could have generated different environments that may or may not be habitable. Here, we use 1-D coupled climate-photochemical models to generate self-consistent atmospheres for several evolutionary scenarios, including high-O2, high-CO2, and more Earth-like atmospheres, with both oxic and anoxic compositions. We show that these modeled environments can be habitable or uninhabitable at Proxima Cen b’s position in the habitable zone. We use radiative transfer models to generate synthetic spectra and thermal phase curves for these simulated environments, and use instrument models to explore our ability to discriminate between possible planetary states.
Advancements in our understanding of exoplanetary atmospheres, from massive gas giants down to rocky worlds, depend on the constructive challenges between observations and models. We are now on a clear trajectory for improvements in exoplanet observations that will revolutionize our ability to characterize the atmospheric structure, composition, and circulation of these worlds. These improvements stem from significant investments in new missions and facilities, such as JWST and the several planned ground-based extremely large telescopes. However, while exoplanet science currently has a wide range of sophisticated models that can be applied to the tide of forthcoming observations, the trajectory for preparing these models for the upcoming observational challenges is unclear. Thus, our ability to maximize the insights gained from the next generation of observatories is not certain.
Exo-C is a NASA-sponsored community mission study of a space telescope designed for high contrast imaging of extrasolar planetary systems with an internal coronagraph. Starting in summer 2013 and completing in early 2015, the Exo-C study shows what could be done with an optimized space telescope within a “probe scale” cost cap of $1B. The Exo-C study is being carried out by a Science and Technology Definition selected by NASA HQ and by an engineering design team at the Jet Propulsion Laboratory.
Direct imaging of extrasolar planets with future space-based coronagraphic telescopes may provide a means of detecting companion moons at wavelengths where the moon outshines the planet. We propose a detection strategy based on the positional variation of the center of light with wavelength, “spectroastrometry.” This new application of this technique could be used to detect an exomoon, to determine the exomoon’s orbit and the mass of the host exoplanet, and to disentangle the spectra of the planet and moon.
Characterizing the bulk atmosphere of a terrestrial planet is important for determining surface pressure and potential habitability. Molecular nitrogen (N2) constitutes the largest fraction of Earth’s atmosphere and is likely to be a major constituent of many terrestrial exoplanet atmospheres. Due to its lack of significant absorption features, N2 is extremely difficult to remotely detect. However, N2 produces an N2–N2 collisional pair, (N2)2, which is spectrally active. Here we report the detection of (N2)2 in Earth’s disk-integrated spectrum.
We observed Venus with the Apache Point Observatory 3.5 m telescope TripleSpec spectrograph (R = 3500, λ = 0.96–2.47 µm) on 1–3 March 2009 and on 25, 27, and 30 November and 2–4 December 2010. With these observations and synthetic spectra generated with the Spectral Mapping and Atmospheric Radiative Transfer model, we produce the first simultaneous maps of cloud opacity, acid concentration, water vapor (H2O), hydrogen chloride (HCl), carbon dioxide (CO), carbonyl sulfide (OCS), and sulfur dioxide (SO2) abundances in the Venusian lower atmosphere.
The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ~ 500) and 1.17-2.48 μm (λ/Δλ ~ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute’s Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ~10% data calibration uncertainty.
A minimum atmospheric temperature, or tropopause, occurs at a pressure of around 0.1 bar in the atmospheres of Earth1, Titan2, Jupiter3, Saturn4, Uranus and Neptune4, despite great differences in atmospheric composition, gravity, internal heat and sunlight. In all of these bodies, the tropopause separates a stratosphere with a temperature profile that is controlled by the absorption of short-wave solar radiation, from a region below characterized by convection, weather and clouds5,6. However, it is not obvious why the tropopause occurs at the specific pressure near 0.1 bar. Here we use a simple, physically based model7 to demonstrate that, at atmospheric pressures lower than 0.1 bar, transparency to thermal radiation allows short-wave heating to dominate, creating a stratosphere. At higher pressures, atmospheres become opaque to thermal radiation, causing temperatures to increase with depth and convection to ensue. A common dependence of infrared opacity on pressure, arising from the shared physics of molecular absorption, sets the 0.1 bar tropopause. We reason that a tropopause at a pressure of approximately 0.1 bar is characteristic of many thick atmospheres, including exoplanets and exomoons in our galaxy and beyond. Judicious use of this rule could help constrain the atmospheric structure, and thus the surface environments and habitability, of exoplanets.
Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere’s response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO2 (present atmospheric level on Earth).
The atmospheres of terrestrial planets are expected to be in long-term radiation balance: an increase in the absorption of solar radiation warms the surface and troposphere, which leads to a matching increase in the emission of thermal radiation. Warming a wet planet such as Earth would make the atmosphere moist and optically thick such that only thermal radiation emitted from the upper troposphere can escape to space. Hence, for a hot moist atmosphere, there is an upper limit on the thermal emission that is unrelated to surface temperature. If the solar radiation absorbed exceeds this limit, the planet will heat uncontrollably and the entire ocean will evaporate—the so-called runaway greenhouse. Here we model the solar and thermal radiative transfer in incipient and complete runaway greenhouse atmospheres at line-by-line spectral resolution using a modern spectral database. We find a thermal radiation limit of 282 W m−2 (lower than previously reported) and that 294 W m−2 of solar radiation is absorbed (higher than previously reported). Therefore, a steam atmosphere induced by such a runaway greenhouse may be a stable state for a planet receiving a similar amount of solar radiation as Earth today. Avoiding a runaway greenhouse on Earth requires that the atmosphere is subsaturated with water, and that the albedo effect of clouds exceeds their greenhouse effect. A runaway greenhouse could in theory be triggered by increased greenhouse forcing, but anthropogenic emissions are probably insufficient.
Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff lesssim 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star’s spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on η⊕, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.
We present an analytic one-dimensional radiative-convective model of the thermal structure of planetary atmospheres. Our model assumes that thermal radiative transfer is gray and can be represented by the two-stream approximation. Model atmospheres are assumed to be in hydrostatic equilibrium, with a power-law scaling between the atmospheric pressure and the gray thermal optical depth. The convective portions of our models are taken to follow adiabats that account for condensation of volatiles through a scaling parameter to the dry adiabat. By combining these assumptions, we produce simple, analytic expressions that allow calculations of the atmospheric-pressure-temperature profile, as well as expressions for the profiles of thermal radiative flux and convective flux. We explore the general behaviors of our model. These investigations encompass (1) worlds where atmospheric attenuation of sunlight is weak, which we show tend to have relatively high radiative-convective boundaries; (2) worlds with some attenuation of sunlight throughout the atmosphere, which we show can produce either shallow or deep radiative-convective boundaries, depending on the strength of sunlight attenuation; and (3) strongly irradiated giant planets (including hot Jupiters), where we explore the conditions under which these worlds acquire detached convective regions in their mid-tropospheres. Finally, we validate our model and demonstrate its utility through comparisons to the average observed thermal structure of Venus, Jupiter, and Titan, and by comparing computed flux profiles to more complex models.
NASA’s EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as “ground truth” for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth’s rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon’s red spectrum partially occulting Earth’s relatively blue spectrum. The “vegetation red edge” spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to establish periodicity in the light curve and deduce Earth’s diurnal period and the existence of fixed surface units.