Abiotic Production of Methane in Terrestrial Planets (Astrobiology, 2013)

On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×108 and 1.3×109 molecules cm−2 s−1 for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life. Key Words: Serpentinization—Exoplanets—Biosignatures—Planetary atmospheres. Astrobiology 13, 550–559.

Continue Reading →

The Influence of Outer Solar System Architecture on the Structure and Evolution of the Oort Cloud (The Astronomical Journal, 2013)

We study the influence of outer solar system architecture on the structural evolution of the Oort Cloud (OC) and the flux of Earth-crossing comets. In particular, we seek to quantify the role of the giant planets as “planetary protectors.” To do so, we have run simulations in each of four different planetary mass configurations to understand the significance of each of the giant planets. Because the outer planets modify the structure of the OC throughout its formation, we integrate each simulation over the full age of the solar system. Over this time, we follow the evolution of cometary orbits from their starting point in the protoplanetary disk to their injection into the OC to their possible re-entry into the inner planetary region. We find that the overall structure of the OC, including the location of boundaries and the relative number of comets in the inner and outer parts, does not change significantly between configurations; however, as planetary mass decreases, the trapping efficiency (TE) of comets into the OC and the flux of comets into the observable region increases. We determine that those comets that evolve onto Earth-crossing orbits come primarily from the inner OC but show no preference for initial protoplanetary disk location. We also find that systems that have at least a Saturn-mass object are effective at deflecting possible Earth-crossing comets but the difference in flux between systems with and without such a planet is less than an order of magnitude. We conclude by discussing the individual roles of the planets and the implications of incorporating more realistic planetary accretion and migration scenarios into simulations, particularly on existing discrepancies between low TE and the mass of the protoplanetary disk and on determining the structural boundaries of the OC.

Continue Reading →

All Six Planets Known to Orbit Kepler-11 Have Low Densities (The Astrophysical Journal, 2013)

The Kepler-11 planetary system contains six transiting planets ranging in size from 1.8 to 4.2 times the radius of Earth. Five of these planets orbit in a tightly packed configuration with periods between 10 and 47 days. We perform a dynamical analysis of the system based upon transit timing variations observed in more than three years of Kepler photometric data. Stellar parameters are derived using a combination of spectral classification and constraints on the star’s density derived from transit profiles together with planetary eccentricity vectors provided by our dynamical study. Combining masses of the planets relative to the star from our dynamical study and radii of the planets relative to the star from transit depths together with deduced stellar properties yields measurements of the radii of all six planets, masses of the five inner planets, and an upper bound to the mass of the outermost planet, whose orbital period is 118 days. We find mass-radius combinations for all six planets that imply that substantial fractions of their volumes are occupied by constituents that are less dense than rock. Moreover, we examine the stability of these envelopes against photoevaporation and find that the compositions of at least the inner two planets have likely been significantly sculpted by mass loss. The Kepler-11 system contains the lowest mass exoplanets for which both mass and radius have been measured.

Continue Reading →

APOSTLE: Longterm Transit Monitoring and Stability Analysis of XO-2b (The Astrophysical Journal, 2013)

The Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) observed 10 transits of XO-2b over a period of 3 yr. We present measurements that confirm previous estimates of system parameters like the normalized semi-major axis (a/R sstarf), stellar density (ρsstarf), impact parameter (b), and orbital inclination (i orb). Our errors on system parameters like a/R sstarf and ρsstarf have improved by ~40% compared to previous best ground-based measurements. Our study of the transit times show no evidence for transit timing variations (TTVs) and we are able to rule out co-planar companions with masses ≥0.20 M ⊕ in low order mean motion resonance with XO-2b. We also explored the stability of the XO-2 system given various orbital configurations of a hypothetical planet near the 2:1 mean motion resonance. We find that a wide range of orbits (including Earth-mass perturbers) are both dynamically stable and produce observable TTVs. We find that up to 51% of our stable simulations show TTVs that are smaller than the typical transit timing errors (~20 s) measured for XO-2b, and hence remain undetectable.

Continue Reading →

Kepler-62: A Five-Planet System with Planets of 1.4 and 1.6 Earth Radii in the Habitable Zone (Science, 2013)

NASA’s Kepler space telescope was launched in 2009 with the goal of detecting planets the size of Earth in the habitable zone of Sun-like stars and determining the frequency of these planets. Using data from Kepler, Borucki et al. (p. 587, published online 18 April) report the detection of a five-planet system where all the planets are smaller than twice the size of Earth and where the two outermost planets orbit in the habitable zone of their star, defined as the region where a rocky planet can host liquid water on its solid surface. The star, Kepler-62, is smaller and cooler than the Sun.

Continue Reading →

Apostle: Longterm Transit Monitoring and Stability Analysis of XO-2b (The Astrophysical Journal, 2013)

We present measurements that confirm previous estimates of system parameters like the normalized semi-major axis (a/R sstarf), stellar density (ρsstarf), impact parameter (b), and orbital inclination (i orb). Our errors on system parameters like a/R sstarf and ρsstarf have improved by ~40% compared to previous best ground-based measurements. Our study of the transit times show no evidence for transit timing variations (TTVs) and we are able to rule out co-planar companions with masses ≥0.20 M ⊕ in low order mean motion resonance with XO-2b.

Continue Reading →

Evidence for reactive reduced phosphorus species in the early Archean ocean (PNAS, 2013)

Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol–phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth.

Continue Reading →

Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. V. A Low Eccentricity Brown Dwarf from the Driest Part of the Desert, MARVELS-6b (The Astronomical Journal, 2013)

We describe the discovery of a likely brown dwarf (BD) companion with a minimum mass of 31.7 ± 2.0 M Jup to GSC 03546-01452 from the MARVELS radial velocity survey, which we designate as MARVELS-6b. For reasonable priors, our analysis gives a probability of 72% that MARVELS-6b has a mass below the hydrogen-burning limit of 0.072 M ☉, and thus it is a high-confidence BD companion. It has a moderately long orbital period of $47.8929^{+0.0063}_{-0.0062}$ days with a low eccentricity of $0.1442^{+0.0078}_{-0.0073}$, and a semi-amplitude of $1644^{+12}_{-13}$ m s–1. Moderate resolution spectroscopy of the host star has determined the following parameters: T eff = 5598 ± 63, log g = 4.44 ± 0.17, and [Fe/H] = +0.40 ± 0.09. Based upon these measurements, GSC 03546-01452 has a probable mass and radius of M * = 1.11 ± 0.11 M ☉ and R * = 1.06 ± 0.23 R ☉ with an age consistent with less than ~6 Gyr at a distance of 219 ± 21 pc from the Sun. Although MARVELS-6b is not observed to transit, we cannot definitively rule out a transiting configuration based on our observations. There is a visual companion detected with Lucky Imaging at 7farcs7 from the host star, but our analysis shows that it is not bound to this system. The minimum mass of MARVELS-6b exists at the minimum of the mass functions for both stars and planets, making this a rare object even compared to other BDs. It also exists in an underdense region in both period/eccentricity and metallicity/eccentricity space.

Continue Reading →

Quantitative discrimination between geological materials with variable density contrast by high resolution X-ray computed tomography: An example using amygdule size-distribution in ancient lava flows (Computers & Geoscience, 2013)

We present a new dynamic thresholding method for computationally separating amygdules from their basaltic matrix in X-ray images that is based on a technique used in seismology. The technique is sensitive to the gradient of the gray-scale value, rather than an absolute threshold value often applied to an entire set of X-ray images. Additionally, we present statistical methods for extrapolating the volumetric measurement mean and standard deviation of amygdules in the measured samples to the entire population in the flow. To do so, we create additional amygdule sample sets from the original sample set in the process of ‘bootstrap’ resampling, and use the Central Limit Theorem to calculate the mean and standard deviation of the amygdule population from these sample sets. This suite of methods allows the extension of bubble-size distribution studies typically done on modern flows to the ancient rock record and potentially has many other uses in geosciences where quantitative discrimination between materials with a range of densities is required.

Continue Reading →

Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating (AAS Meeting Abstracts, 2013)

Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ).

Continue Reading →

Tidal Venuses: Triggering a Climate Catastrophe via Tidal Heating (Astrobiology, 2013)

Traditionally, stellar radiation has been the only heat source considered capable of determining global climate on long timescales. Here, we show that terrestrial exoplanets orbiting low-mass stars may be tidally heated at high-enough levels to induce a runaway greenhouse for a long-enough duration for all the hydrogen to escape. Without hydrogen, the planet no longer has water and cannot support life. We call these planets “Tidal Venuses” and the phenomenon a “tidal greenhouse.” Tidal effects also circularize the orbit, which decreases tidal heating. Hence, some planets may form with large eccentricity, with its accompanying large tidal heating, and lose their water, but eventually settle into nearly circular orbits (i.e., with negligible tidal heating) in the habitable zone (HZ).

Continue Reading →

A Revised Estimate of the Occurrence Rate of Terrestrial Planets in the Habitable Zones around Kepler M-dwarfs (ApJ Letters, 2013)

Because of their large numbers, low-mass stars may be the most abundant planet hosts in our Galaxy. Furthermore, terrestrial planets in the habitable zones (HZs) around M-dwarfs can potentially be characterized in the near future and hence may be the first such planets to be studied. Recently, Dressing & Charbonneau used Kepler data and calculated the frequency of terrestrial planets in the HZ of cool stars to be $0.15^{+0.13}_{-0.06}$ per star for Earth-size planets (0.5-1.4 R ⊕). However, this estimate was derived using the Kasting et al. HZ limits, which were not valid for stars with effective temperatures lower than 3700 K. Here we update their result using new HZ limits from Kopparapu et al. for stars with effective temperatures between 2600 K and 7200 K, which includes the cool M stars in the Kepler target list.

Continue Reading →

Habitable Planets Around White and Brown Dwarfs: The Perils of a Cooling Primary (Astrobiology, 2013)

White and brown dwarfs are astrophysical objects that are bright enough to support an insolation habitable zone (IHZ). Unlike hydrogen-burning stars, they cool and become less luminous with time; hence their IHZ moves in with time. The inner edge of the IHZ is defined as the orbital radius at which a planet may enter a moist or runaway greenhouse, phenomena that can remove a planet’s surface water forever. Thus, as the IHZ moves in, planets that enter it may no longer have any water and are still uninhabitable. Additionally, the close proximity of the IHZ to the primary leads to concern that tidal heating may also be strong enough to trigger a runaway greenhouse, even for orbital eccentricities as small as 10−6. Water loss occurs due to photolyzation by UV photons in the planetary stratosphere, followed by hydrogen escape. Young white dwarfs emit a large amount of these photons, as their surface temperatures are over 104 K. The situation is less clear for brown dwarfs, as observational data do not constrain their early activity and UV emission very well. Nonetheless, both types of planets are at risk of never achieving habitable conditions, but planets orbiting white dwarfs may be less likely to sustain life than those orbiting brown dwarfs. We consider the future habitability of the planet candidates KOI 55.01 and 55.02 in these terms and find they are unlikely to become habitable. Key Words: Extrasolar terrestrial planets—Habitability—Habitable zone—Tides—Exoplanets. Astrobiology 13, 279–291.

Continue Reading →

Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina (BBA Bioenergetics, 2013)

Acaryochloris marina is the only species known to utilize chlorophyll (Chl) d as a principal photopigment. The peak absorption wavelength of Chl d is redshifted ≈40nm in vivo relative to Chl a, enabling this cyanobacterium to perform oxygenic phototrophy in niche environments enhanced in far-red light. We present measurements of the in vivo energy-storage (E-S) efficiency of photosynthesis in A. marina, obtained using pulsed photoacoustics (PA) over a 90-nm range of excitation wavelengths in the red and far-red. Together with modeling results, these measurements provide the first direct observation of the trap energies of PSI and PSII, and also the photosystem-specific contributions to the total E-S efficiency. We find the maximum observed efficiency in A. marina (40±1% at 735nm) is higher than in the Chl a cyanobacterium Synechococcus leopoliensis (35±1% at 690nm). The efficiency at peak absorption wavelength is also higher in A. marina (36±1% at 710nm vs. 31±1% at 670nm). In both species, the trap efficiencies are ≈40% (PSI) and ≈30% (PSII). The PSI trap in A. marina is found to lie at 740±5nm, in agreement with the value inferred from spectroscopic methods. The best fit of the model to the PA data identifies the PSII trap at 723±3nm, supporting the view that the primary electron-donor is Chl d, probably at the accessory (Chl(D1)) site. A decrease in efficiency beyond the trap wavelength, consistent with uphill energy transfer, is clearly observed and fit by the model. These results demonstrate that the E-S efficiency in A. marina is not thermodynamically limited, suggesting that oxygenic photosynthesis is viable in even redder light environments.

Continue Reading →

Atmospheric sulfur rearrangement 2.7 billion years ago: Evidence for oxygenic photosynthesis (Earth and Planetary Science Letters, 2013)

We present multiple sulfur isotopes for 2.71 Ga pyritic black shales derived from the Kidd Creek area, Ontario, Canada. These samples display high positive Δ33S values up to 3.8‰ and the typical late Archean slope in Δ36S/Δ33S of −0.9. In contrast, the time period before (3.2–2.73 Ga) is characterized by greatly attenuated MIF-S magnitudes and a slope in Δ36S/Δ33S of −1.5. We attribute the increase in Δ33S magnitude as well as the contemporaneous change in the slope of Δ36S/Δ33S to changes in the relative reaction rate of different MIF-S source reactions and changes in atmospheric sulfur exit channels. Both of these are dependent on atmospheric CH4:CO2 and O2 mixing ratios. We propose a distinct change in atmospheric composition at 2.7 Ga resulting from increased fluxes of oxygen and methane as the best explanation for the observed Neoarchean MIF-S record. Our data and modeling results suggest that oxygenic photosynthesis was a major contributor to primary productivity 2.7 billion years ago.

Continue Reading →

Habitable Zones around Main-sequence Stars: New Estimates (The Astrophysical Journal, 2013)

Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future space missions. Most current estimates of the boundaries of the HZ are based on one-dimensional (1D), cloud-free, climate model calculations by Kasting et al. However, this model used band models that were based on older HITRAN and HITEMP line-by-line databases. The inner edge of the HZ in the Kasting et al. model was determined by loss of water, and the outer edge was determined by the maximum greenhouse provided by a CO2 atmosphere. A conservative estimate for the width of the HZ from this model in our solar system is 0.95-1.67 AU. Here an updated 1D radiative-convective, cloud-free climate model is used to obtain new estimates for HZ widths around F, G, K, and M stars. New H2O and CO2 absorption coefficients, derived from the HITRAN 2008 and HITEMP 2010 line-by-line databases, are important improvements to the climate model. According to the new model, the water-loss (inner HZ) and maximum greenhouse (outer HZ) limits for our solar system are at 0.99 and 1.70 AU, respectively, suggesting that the present Earth lies near the inner edge. Additional calculations are performed for stars with effective temperatures between 2600 and 7200 K, and the results are presented in parametric form, making them easy to apply to actual stars. The new model indicates that, near the inner edge of the HZ, there is no clear distinction between runaway greenhouse and water-loss limits for stars with T eff lesssim 5000 K, which has implications for ongoing planet searches around K and M stars. To assess the potential habitability of extrasolar terrestrial planets, we propose using stellar flux incident on a planet rather than equilibrium temperature. This removes the dependence on planetary (Bond) albedo, which varies depending on the host star’s spectral type. We suggest that conservative estimates of the HZ (water-loss and maximum greenhouse limits) should be used for current RV surveys and Kepler mission to obtain a lower limit on η⊕, so that future flagship missions like TPF-C and Darwin are not undersized. Our model does not include the radiative effects of clouds; thus, the actual HZ boundaries may extend further in both directions than the estimates just given.

Continue Reading →

A Search for Exozodiacal Clouds with Kepler (The Astrophysical Journal, 2013)

Here we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3-sigma confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters.

Continue Reading →

A sub-Mercury-sized exoplanet (Nature, 2013)

Since the discovery of the first exoplanets1,2, it has been known that other planetary systems can look quite unlike our own3. Until fairly recently, we have been able to probe only the upper range of the planet size distribution4,5, and, since last year, to detect planets that are the size of Earth6 or somewhat smaller7. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury8. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

Continue Reading →

Convergence zones for Type I migration: an inward shift for multiple planet systems (A&A, 2013)

Earth-mass planets embedded in gaseous protoplanetary disks undergo Type I orbital migration. In radiative disks an additional component of the corotation torque scaling with the entropy gradient across the horseshoe region can counteract the general inward migration, Type I migration can then be directed either inward or outward depending on the local disk properties. Thus, special locations exist in the disk toward which planets migrate in a convergent way. Here we present N-body simulations of the convergent migration of systems of low-mass (M = 1−10M⊕) planets. We show that planets do not actually converge in convergence zones.

Continue Reading →

Exomoon Habitability Constrained by Illumination and Tidal Heating (Astrobiology, 2013)

The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge.” We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon. Key Words: Astrobiology—Extrasolar planets—Habitability—Habitable zone—Tides. Astrobiology 13, 18–46.

Continue Reading →

EXOFAST: A fast exoplanetary fitting suite in IDL (Publications of the Astronomical Society of the Pacific, 2013)

We present EXOFAST, a fast, robust suite of routines written in IDL which is designed to fit exoplanetary transits and radial velocity variations simultaneously or separately, and characterize the parameter uncertainties and covariances with a Differential Evolution Markov Chain Monte Carlo method. We describe how our code incorporates both data sets to simultaneously derive stellar parameters along with the transit and RV parameters, resulting in more self-consistent results on an example fit of the discovery data of HAT-P-3b that is well-mixed in under five minutes on a standard desktop computer.

Continue Reading →

Observations of the WASP-2 System by the APOSTLE Program (The Astrophysical Journal Letters, 2013)

We present transit observations of the WASP-2 exoplanet system by the Apache Point Survey of Transit Lightcurves of Exoplanets (APOSTLE) program. Model fitting to these data allows us to improve measurements of the hot-Jupiter exoplanet WASP-2b and its orbital parameters by a factor of ~2 over prior studies; we do not find evidence for transit depth variations. We do find reduced chi^2 values greater than 1.0 in the observed minus computed transit times.

Continue Reading →

How Was Early Earth Kept Warm? (Science, 2013)

Why do some gases cause greenhouse warming, whereas others do not? H2O is a greenhouse gas because it has a permanent electric dipole moment (a charge separation within the molecule) that allows it to interact strongly with electromagnetic radiation. CO2 also has an electric dipole moment, but it has to bend or stretch asymmetrically to create it, because, unlike H2O, it is a linear molecule. N2 and O2 are not normally considered to be greenhouse gases, because these symmetric, diatomic molecules have no electric dipole moment and cannot bend or stretch to create one. But as Wordsworth and Pierrehumbert show on page 64 of this issue (1), N2 and molecular hydrogen (H2) can be greenhouse gases under the right conditions; H2 may have been important for Earth’s Archean climate (before 2.5 billion years ago).

Continue Reading →